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The growth dynamics of filamentary microbial colonies is investigated. Fractality of the fungal or actino-
mycetes colonies is shown both theoretically and in numerical experiments to play an important role. The
growth observed in real colonies is described by the assumption of time-dependent fractality related to the
different ages of various parts of the colony. The theoretical results are compared to a simulation based on
branching random walks.
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I. INTRODUCTION

Filamentary micro-organisms, like fungi and actino-
mycetes, draw much attention because of their widespread
appearance. They are to be found everywhere from the soil
to our own bodyf1,2g. Their role as decomposers is impor-
tant, e.g., in the global carbon cycle. Through their symbiotic
connections with plant root systems they take part in the
redistribution and transfer of nutrients and mineralsf3g.
Moreover, their importance is underlined by the fact that a
significant portion of enzymes, antibiotics, and vitamins are
produced by their cultivationf1,4–6g.

Filamentary micro-organisms start their life cycle as a
single spore. Under favorable environmental conditions, the
budding spore produces a long filament called agerm tube
f1,2,4,7g, which explores the surroundings for available nu-
trients. To better utilize the available resources the germ tube
undergoes branching, producing new filaments calledhy-
phae, which themselves also start branching. The hyphae
grow at their apex, while nutrients are gained along the total
length of the branchesf1,2,4,7–11g; thus there is a continu-
ous transportation of materials inside the filaments. In par-
ticular, cell wall building materials are transported toward
the extending tipf1,2,4,7,10,11g. This process eventually
leads to a colony of densely packed hyphae called amyce-
lium f1,2,7g. At the initial stage of growth, when the nutrients
are in abundance and the hyphae are not impeding each oth-
ers growth, the growth of the colony has been measured to
be exponentialf2,4,7,8,12,13g. Later, as the resources in the
center of the colony are exhausted and the hyphae in that
region start to overlap, growth is limited to the edge of the
colony and vegetative growth in the center decays
f2,4,7,8,12,13g. The decaying colony provides the necessary
nutrients for aerial growth f1,2,7g, where aerial branches
grow out of the susually planard mycelium. At this stage
antibiotics are produced to prevent other micro-organisms
from utilizing the decaying myceliumsmoreover, the elimi-
nated competitors are utilized for the aerial growthd f2g. Fi-
nally, the aerial branches start pinching and produce new
spores to restart the life cyclef1,2,7g.

In this paper the main goal is to model the growth of the
whole colony. Recent models have either concentrated on the
initial exponentially growing stage of the colony
f4,7,9,14–17g or on the later stage when growth in the center
has already ceasedf4,7,8,18–22g. Although measurements
f1,12,13g and simulationsf23g show the crossover between
these two stages, so far no model has given a quantitative
account for the slowing down of the growth. It has been
pointed out that the intricate topology of the colony formed
by the branching filaments is best described by the concept
of fractality f24,25g; see also Fig. 1. It has been suggested
that fractality could provide a means to characterize different
speciesf26,27g. However, no attempt has been made to in-
corporate the observed fractal scaling in describing the de-
tails of growth, even though the growth of a colony can be
simply modeled by abranching random walk, which is
known to generate fractal patterns with time-dependent frac-
tality f28g.

Recent resultsf29–35g in the fields of chemical or bio-
logical activity on fractal sets, however, have provided an
appropriate framework to incorporate fractality into the study
of growth processes. In these works open chaotic hydrody-
namical flows are shown to produce stable filamental fractal
patterns of advected chemically or biologically active spe-
cies. The description of activity on fractals requires a dra-
matic change to the traditional reaction equations: a non-
trivial, singular term appears in the equationsf29–31,33g. It
has been shown that this term provides a possible solution to
problems related both to plankton population dynamics
f32,34g and to prebiotic evolutionf32,35,36g.

In open flows, fractal patterns are generated by an exter-
nal physical process and the activity occurs on this fractal
skeleton. In the case of filamentary micro-organisms, how-
ever, the complicated geometry is generated by the growth
process itself, governed by the search for and efficient utili-
zation of resources. Another important difference is that
while advection in open chaotic flows produces a fractal
whose dimension does not depend on time, in the case of
fungi and actinomycetes the fractality istime dependent
f24,25,37g. Furthermore, the mycelium is densest in the cen-
ter of the colony, and rarest close to the edges. This results in
the colony having a higher fractal dimension in its aging
center and a lower dimension close to the colony edge. This
inhomogeneity suggests that models based on a continuous
distribution of biomassf4,7,8,17–20,38–40g have to be re-
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vised. The assumption that the hyphal surface, where nutrient
uptake takes place, is proportional to biomassf38,39g must
also be revised due to fractality. In this paper we propose a
simple model of nutrient uptake and filament growth, which
is designed to incorporate the effect of the fractal distribution
of biomass.

In Sec. II a model of colony growth is developed, which
takes into account the age-dependent fractality of the colony.
In Sec. III the theoretical results are compared with data
obtained from numerical simulations. We present our conclu-
sions in Sec. IV.

II. MODEL FOR COLONY GROWTH

Chemical or biological processes occurring along a fractal
boundary are associated with significantly enhanced activity
as compared to processes occurring along regular boundaries
f29–31,33g. In the case of filamentary micro-organisms the
activity is nutrient uptake; the main advantage of the intricate
and complicated geometry of the colony is the greatly in-
creased surface area of the hyphae, which is where the nu-

trient resources are gained. In this paper we assume that
there is only one resource limiting growth and that all other
resources are in abundance. In our model a simple autocata-
lytic utilization of the limiting resource is assumed; i.e., a
certain fixed portion of the consumed nutrients are directly
converted to biomassf39g.

For simplicity and for ease of comparison with the result
of the simulations described in the next section, we will con-
sider a two-dimensionals2Dd colony. Besides the fact that
filamentary micro-organism colonies, when grown on a sur-
face slike moist bread, damp soil, or synthetic solid me-
diumd, are effectively two dimensional, the same derivation
can be applied in three dimensions. We concentrate on a part,
A0, of the colony, like the one in Fig. 1, which is small
compared to the total colony size. This colony part possesses
a well-defined scaling withstime-dependentd fractal dimen-
sion D. Let Lstd denote the total hyphal lengthswhich is
proportional to biomass due to the constant cross-sectional
area of the filamentsd in the reference areaA0 of the colony at
time t after the first branch has grown into it. The filaments
within A0 can utilize the nutrients contained in the growth
medium of this region. During a short timeDt, resources in a
narrow strip of widthDs along the hyphae are assumed to be
consumed by the filamentssFig. 2d. This means that during
time Dt the total consumed nutrient mass in 2D is

Dmn = LcDs%, s1d

where% is the average concentration of the limiting resource
which depends on time, decreasing as the nutrients are con-
sumed. The geometrical factorc would be 2 for ideal paral-
lel, straight filaments; however, it deviates from this value to
some extent due to the bending of the hyphae, as explained
in Refs.f29–31,33g.

A portion, g,1, of the consumed nutrientsDmn are di-
rectly converted to biomass, which increases the hyphal
length; the rest maintains the metabolism of the already ex-
isting filaments. If the average density of the filaments is% f,
then filaments of radiusr during timeDt will grow in length
by

DL =
gDmn

% fcr
= gDs

%

% f

L
r

. s2d

We can take the limitDs→0 and Dt→0, while keeping
their ratio constant:

v = lim
Dt→0,Ds→0

Ds

Dt
. s3d

FIG. 1. sad Part of a Streptomyces Coelicolor A3s2d colony.
Picture taken in the Arizona Research Lab is courtesy of Alain
Goriely and Michael Tabor.sbd NumberNs«d of boxes of linear size
« covering filaments in picturesad scales asN,«−D, where D
=1.73±0.03 is the fractal dimension of this part of the colony. The
horizontal axis is rescaled by the linear sizeL of image sad. For
large boxes,« reaches the size of imagesad sright side, with tangent
−2d.

FIG. 2. sColor onlined Nutrients are consumed from a narrow
stripe of widthDs along the hyphae of radiusr during timeDt.
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This is the rate of nutrient consumptionswhich can be re-
lated, for example, to diffusion through the cell membraned.
This implies that

dL
dt

= gv
%

% f

L
r

. s4d

The available nutrient pool is reduced by consumption; its
concentration% decreases while the colony becomes increas-
ingly dense. However, it is not only the biomass density that
changes during growth; for fractals a better measure is the
fractal dimension, which changes with timef25,27,41,42g. It
makes sense to assume that the available resource concentra-
tion % will depend on the fractal dimensionD of the colony.
This means that as the colony becomes densersi.e., D in-
creases as a result of growthd the availability of the resources
decreasessas they are consumedd. When the grown is on a
solid surface and the linear size,0 of the region of observa-
tion A0 is much larger than the diffusion distance for typical
limiting nutrients slike glucose, phosphorus, mineralsd, we
can safely neglect nutrient diffusion intoA0, because it has
only a minor effect on the available nutrientsf7g sN.B. inter-
nal nutrient translocation seems to have a more important
effect f39gd. The decrease in the available nutrient concentra-
tion during time Dt is −Dmn/ sDt,0

2d. Taking the limit Dt
→0 as before, we find

d%sDd
dt

= −
Lcv%sDd

,0
2 . s5d

As supported by observationsf24,26g ssee also Fig. 1d and
computer simulationsf23,26g, filaments form a fractal set in
A0 in a certain scaling regionr øeø,0, bounded by the fila-
ment width r from below and by,0, the linear size of the
observation regionA0, from above. The length of the fila-
ments is measured asL=eNsed, whereNsed is the number of
boxes of linear sizee covering the mycelium. For a fractal of
dimensionD, Nsed=Hse /,0d−D f41g, whereH is a propor-
tionality constant called theHausdorff measuref43g. Choos-
ing e=r sthe lower bound of the fractal scaling intervald, we
find

L = Hr1−D,0
D. s6d

Taking the derivative of Eq.s6d and inserting it into Eq.
s4d leads to1

dD

dt
=

gv%sDd
r% f ln d

, s7d

where d=,0/ r @1 is the size of the region of observation
relative to filament radius. Using Eq.s5d a differential equa-
tion can be obtained for%sDd as

d%sDd
dD

= −
Hc% f ln d

g
dD−2. s8d

This can be solved with the condition that initially there is
only a single hypha inA0, having dimensionDst=0d=1,
when the nutrient concentration is%st=0d=%sD=1d=%0, to
give

%sDd = %0 +
Hc% f

gd2 sd − dDd. s9d

From Eq.s7d the time dependence of the fractal dimension in
A0 is obtained with initial conditionDs0d=1 as

Dstd =
1

ln d
ln5 Hc% fd + d2g%0

Hc% f + g%0d expF−
v
r
SHc

d
+

g%0

% f
DtG6 .

s10d

As filaments grow into the different regions of the colony at
different times, thus initiating growth in those regions, the
fractal dimension will be different in each of the various
regions, in agreement with observationsf25g.

Using Eq.s6d again, the total length of the hyphae can be
written as

Lstd = Hr
Hc% fd + g%0d2

Hc% f + g%0d expF−
v
r
SHc

d
+

g%0

% f
DtG . s11d

Being closely related to the total biomass, it is easy to mea-
sureLstd in either experiments or simulations.

Formula s11d can be rewritten in a dimensionless form.
We introduceR=g%0/% f, the ratio of utilizable initial re-
source concentration to the density of the filaments, andH
=Hc/d=Hcr /,0, which is proportional to the ratio of the
filament diameter and the linear size,0 of the region of ob-
servation. Then the dimensionless hyphal lengthL=L / rHd
=L /H,0 as a function of the dimensionless timet=vt / r is

Lstd =
H + R

H + Rexpf− sH + Rdtg
. s12d

SinceH,1/d!1, we have thatR@H. This means that, be-
sides the rate of nutrient uptakev, it is the ratio of the uti-
lizable nutrient concentration to the filament density that has
the major role in determining the biomass growth:

Lstd =
R

H + Re−Rt . s13d

For smallt, the second term in the denominator is much
larger than the first term. This means thatLstd<eRt—that is,
Lstd<H,0 expsgtv%0/ r% fd—which implies aninitial expo-
nential growth as observed for filamentary colonies
f2,8,12,13g. Later, ast increases, the exponential vanishes in
the denominator, leading toLstd<R/H—that is, Lstd
<grd2%0/c% f; i.e., there isno growth after a long enough
time. As the total hyphal length to coverA0 would be L
=,0

2/ scrd=rd2/c, this stage corresponds to an almost filled

1Here we have assumed thatH does not depend on time. A more
precise treatment would show that an additional term containing

−Ḣ / sH ln dd would appear in the right-hand side of Eq.s7d. This,

through Ḣ,0, would increase the growth ofD, that is, of the

biomass, especially in the initial stage whenuḢu is expected to be
larger.
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region of observationsg%0/% f ,1d. At this late stage the
remaining available resource concentration is%=0. The frac-
tal dimension is expected to saturate aroundD=2
+lnsg%0/Hc% fd / lnsdd, for d@1. This value forD is ex-
pected to be somewhat below 2, which would be the fractal
dimension of a plane-filling mycelium. Finally the growth in
the region of observation ceases due to a lack of nutrients
f2,4,7,8,12,13g. Altogether, the graph of Eq.s13d shows good
qualitative agreement with observations of biomass growth
in experiments studying fungissee, for example, Fig. 2 of
f6g, Fig. 7 of f8g, Fig. 1 of f13g, Fig. 5 of f21g, and Fig. 9 of
f27gd.

The advantage of our model is that the parameters are
directly measurable in experiments. The initial resource con-
centration%0 is an environmental variable, easily tunable in
experiments. The average internal density% f of the hyphae,
the portiong of resources spent on growth, the ratev of
nutrient consumption, and the radiusr of the hyphae are
specific to species and can be measured. The geometrical
constantsH andc are determined by the shape of the colony,
while d depends on the size of the chosen region of obser-
vation. This means that the validity of Eq.s11d can be readily
checked in an experiment. In the next section the validity of
Eq. s13d is checked using a simple numerical model of fila-
mentary colony growth based on a branching self-avoiding
random walk.

III. SIMULATION RESULTS

To check the validity of the model developed in the pre-
vious section computer-simulated filamentary colonies were
investigated. The simulation of a colony starts from a single
point at the origin; this models the initiation of growth from
a single spore. Growth occurs in discrete time steps. The
exact position of the tip of each growing filament is stored,
along with its position at all previous time steps. A segment
of filament is drawn from each of these points back to the
position of the same tip in the preceding time step. The re-
gion of observation is covered by a grid. A value is stored for
each grid cell that is equal to the number of filament seg-
ments in that cell. This grid then characterizes the density of
the mycelium.

One step of the growth process consists of three stages:
bending, growth, and branching. During thebending stage,
all tips choose a new growth direction from 18 different di-
rections, an angle 2p /18 apart. First, a probability is as-
signed to each of the 18 directions. The default probability is
highest in the same direction as the growth direction of the
tip during the previous growth step and decreases linearly so
as to reach zero in the opposite direction. This default prob-
ability is decreased linearly with the mycelial density around
the tip in each directions. The mycelial density is taken from
the values stored in the grid cells coveringA0.

The dependence of the probabilities on the mycelial den-
sity models that the tip will try to avoid regions of high
hyphal content where the nutrients have been depletedf14g.
One of the 18 directions is chosen randomly according to
their corrected probabilities. If all directions have zero prob-
ability, then the tip does not grow any longer.

Thegrowth stagefollows after a new growth direction has
been chosen for each of the tips. Each tip which has not
ceased to grow is moved in its chosen direction a distance
that is selected randomly, with uniform probability, from an
interval. This gives new tip positions, and the mycelial con-
tent stored for each grid cell is also updated. Finally, in the
branching stage, there is a small chance that any nonceased
filaments branch, forming a new growing tip at any of the
previous tip locations.

Altogether, this is a simple, but realistic simulation of
filamentary colonies, based on an implementation of branch-
ing random walks where intersections of trajectories are re-
stricted by density. If the maximum density is 1—that is, the
probability of growth falls to zero in directions containing a
single hypha—this is a self-avoiding, branching random
walk. This model can be considered a simplified version of
the model in Ref.f23g and produces colonies qualitatively
similar to realistic fungal or actinomycetes colonies; com-
pare Figs. 1 and 3sad.

The measured total filament length as a function of time is
shown in Fig. 3sbd, together with the prediction obtained
from Eq. s11d. The parameters in Eq.s11d can be approxi-
mated from the computer model parameters. In the compu-
tational model, the grid size defined on the region of obser-

FIG. 3. sad Part of the simulated colony. Applied parameters are
in the text. sbd Comparison of the measured total hyphal length
ssolid lined in the course of time with that obtained from Eq.s11d
sdashed lined. Units used for length are converted to the dimension-
less units of the simulation; thus total length is measured and com-
puted inside regionA0 with hyphal diameter 0.04ssee main textd.
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vation A0=f−20,20g3 f−20,20g s,0=40d was 100031000.
It means that the approximate diameter of the hyphae was
2r <0.04 slinear size of one grid celld, while d<1000. The
length of the growth steps was chosen randomly from the
interval f0.04, 0.4g sone to ten grid cellsd. The dimensionless
combination of the parametersR=g%0/% f appearing in Eq.
s13d was taken to be unity; i.e., in the computer model the
resources are turned directly into biomass. In reality this
term is below 1, but in this simple model the consumed
resources are used only for growth; the effects of processes
such as the upkeep of existing nutrients, internal transloca-
tion of nutrients, etc., are not considered. The geometrical
constants are usually of the order of 1; for a simple choice
we takeH=1 andc=2, leading toH=0.002. Hence the only
parameter remaining to be fitted isv / r, the dimensionless
time unit, which was identified asv / r =0.009 62±0.000 03
swith one time unit being one simulation time stepd. This
means that during one growth time stepDt, the nutrients are
utilized to a distance ofDs< r /100 from the hyphae. In
reality, this parameter should also be related to the transport
rate through the cell membrane and to the diffusion of re-
sources in the medium that transports the available resources
close to the hyphae, but these mechanisms are not included
in the computational model. Despite its simplicity, Eq.s11d
approximates well the computational results with the esti-
mated parameter values. Allowing for the time dependence
of H ssee footnote 1d in the theoretical description would
increase the activitysand biomassd at the initial stage of
growth. This is expected to give an even better correspon-
dence between the numerical and the theoretical curves of
Fig. 3sbd, where the theoretical prediction is below the mea-
sured biomass. In the late stages, the measured biomass is
smaller than that predicted by Eq.s11d, because the numeri-
cal simulation neglected the effect that filaments, in reality,
may return to the examined region after having previously
left it. This causes the break in the measured curve around
the 700th time step. A more elaborated numerical experi-
ment, which follows more closely the growth of real colo-
nies, would be expected to follow the prediction given by
Eq. s11d.

IV. CONCLUSIONS AND DISCUSSION

The main goal of the model developed in this paper is the
incorporation of time-dependent fractality into the study of
colony growth. Without any further assumptions about the
details of the activitysgrowth and nutrient uptaked the model
is able to describe the initial exponential and the later satu-
rating stages of growth. To achieve this no artificial cross-
over terms or saturating activity terms were necessary, like
those used in Refs.f4,13,17,19,20,22,38,39g. Also, contrary
to Refs. f18,21,22g, it was not assumed that growth is re-
stricted to the perimeter of the colony. The main ingredients
of the model are the time-dependent fractality, which is con-
nected to resource consumption, and that growth is restricted
to the hyphal tips, while resources are taken up all along the
filaments.

In our model, the biological activity is described, with
only a few parameters, by the speedv of resource consump-
tion and the rateg of resource utilization for growth. In order
to model different types of colonies and various pattern for-
mations observed in fungal coloniesf38–40g. It may be nec-
essary to extend this model in order to describe different
types of colonies and the various pattern formations ob-
served in fungal coloniesf20,38–40,42g. Other variables
slike density of growing tips, mass of inactive mycelium,
internal resource translocation, external resource diffusion,
effects of more than one resource, etc.d can also be incorpo-
rated in the model.

Although the derivation of Eq.s11d was based on the
assumption of a two-dimensional colony, it is quite straight-
forward to extend it to colonies in three dimensions. In di-
mensionless units, the length of the filaments as a function of
time is described by the same expressions13d as in the 2D
case, with the exception that the constantsR andH are dif-
ferent:R=gc%0/% f, H=Hcp /d2=Hcpr2/,0

2. The qualitative
features of the equations thus remain the same, and the im-
portant ideassto incorporate time-dependent fractality and
consumption of nutrientsd and findingsssaturation of growth
after exponential extensiond remain valid.

The results were derived for a partA0 of the colony; Eq.
s11d gives the time dependence of the biomass in this region
of observation. When growth reaches the edges of this re-
gion, the total biomass will consist of the hyphal content in
both the initial and its neighboring regions. However, growth
in the neighboring regions will be retarded as compared with
that in the initial region. To obtain the total hyphal length of
the colony it is necessary to sum up Eq.s11d over the re-
gions, but using adifferent inoculation timefor each region.

Most previous growth models started from the assumption
that biomass is evenly distributed, thus neglecting totally the
microscopic distribution of materialsf4,7,8,17–20,38–40g.
This paper shows how to incorporate the microscale details
sfractalityd into a macroscopic description. The effect of this
alone provides realistic growth profiles for the colonies.

The model introduced in this paper is also relevant to the
study of active processes in flows. Activity in fluids can oc-
cur along filamental fractals formed by the stretching and
folding action of the flow. Inopenflows, this produces frac-
tal filaments of stationary fractal dimensionf44g. However,
there is numerical evidencef45g that, for a transient time,
there is a time dependence in the fractality of the advected
ingredients. It is in this situation that our model may be
applicable.
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